Technology Solutions for Early Detection of Hemorrhage in Pregnant Patients

Bridging the Gap: Caring for Rural Georgia Moms **2025 INAUGURAL CONFERENCE**

Kelsey Mayo, PhD

Co-founder | CEO, Armor Medical Inc. January 24, 2025

Disclaimers

The work described within the Armor Medical section of this talk was supported in part by funding from the Centers for Disease Control (grant #R43DP006818) and the National Institutes of Health. Kelsey Mayo, PhD, has a financial [ownership] interest in Armor Medical Inc. and may financially benefit if the company is successful in marketing its product(s) that is/are related to this research.

The Maternal aRMOR device has not yet entered into the FDA approval process and is not being marketed or sold.

Hemorrhage

The leading cause of maternal death...

- >14 million cases worldwide
- >5% of US Births
- 3x more deadly for black mothers
- \$1.8B in US healthcare cost

... is 90% preventable.

Early bleeding is often SILENT.

Blood Volume Loss	Body's Response
< 500mL (10%)	Compensation vitals normal
< 1000mL (15%)	
<1500mL (25%)	Shock tachycardia / hypotension

References 6-11

Treatment

uterine massage, medications 10 IU Oxytocin: **\$10**

blood transfusion, surgery Hysterectomy + 2wk in ICU: **\$100,000**

Compensation masks bleeding.

Pregnant patients can lose up to 1500mL (~25%) of their blood volume before showing signs of hemodynamic instability.

References 1, 6, 9-11

Current tools are limited.

- Inaccurate
- Inefficient
 - Delayed
- Cannot detect internal bleeding

Bringing it home:

CAUSES OF DEATH: HEMORRHAGE

A majority (11; 69%) of pregnancy-related deaths due to hemorrhage occur within the first 7 days of the postpartum period. Specifically, 7 (44%) of hemorrhage deaths occurred within 24 hours postpartum. All (16; 100%) hemorrhage deaths were determined to be preventable.

The most consistent factors leading to maternal mortality and morbidity have been identified as delays in diagnosis and treatment

"earlier recognition of PPH (eg. before deterioration in vital signs) should be the goal in order to improve outcomes"

References 1, 12

Innovative solutions are emerging

Technologies aimed at enabling earlier hemorrhage recognition by...

- 1. Improving hemorrhage risk prediction
- 2. Measuring blood loss more accurately
- 3. Personalized measurement of compensation
- 4. Reducing healthcare disparities

(racial, geographic, etc.)

Improving hemorrhage risk prediction

Example Innovation: The Vasowatch System

Reference 13,14

	Current SOC	Vasowatch
asurement	\checkmark	X
onalized sation Alert	Х	X
detection	25% EBV lost	Prediction
I bleeding	Х	\checkmark
, continuous	Х	✓ (intrapartum only)
erformance skin types	X	X (PPG)

Improving hemorrhage risk prediction

Example Innovation: Baymatob's Oli PPH

QBL Measurement

Personalized Compensa Alert

Early detection

Internal bleeding

Real-time, continuo

Robust performance a skin types

Reference 16

	Current SOC	Oli PPH
t	\checkmark	X
ation	Х	X
	25% EBV lost	✔ (1 hr pre-birth)
	Х	\checkmark
US	X	✓ (intrapartum only)
cross	X	(unknown)

Measuring blood loss more accurately

Example Innovation: Stryker's TritonX system

Reference 15

	Current SOC	Triton Al
t	\checkmark	\checkmark
ation	X	X
	25% EBV lost	X
	X	X
US	X	Real-time EMR integration only
cross	X	N/A

Bringing it all together...

Innovation: Armor Medical's Maternal aRMOR system

References 15

	Current SOC	Maternal aRMOR
t	\checkmark	\checkmark
ation	Х	\checkmark
	25% EBV lost	√ (<5% EBV lost)
	Х	\checkmark
US	X	\checkmark
cross	X	✓ 10x better than Pulse Oximetry

How it works:

Non-invasive, wearable blood flow monitor for real-time, early hemorrhage detection:

- Automated Quantified Blood Loss (QBL) + Personalized
 - **Compensation Alerts**

International + U.S. Patents Pending

Real-time, continuous, & automated.

Early Detection. Coordinated Response. Timely Treatment.

Happy, Healthy Mom & Baby.

Early accurate detection vs. standard of care

- Preclinical + IRB-approved clinical studies at WashU
- Early detection
 (< Stage I PPH)
- Better performance across all skin types

Key Results

Sensitivity to <5% blood volume lost

Accurate estimation of blood loss (r = 0.98)

Better performance in diverse* patients compared to gold standard

*diverse by age, race/ethnicity, & gender, in pregnant & non-pregnant participants.

Comparison of emerging innovations

	Current SOC	Triton Al	Baymatob's Oli	Vasowatch	Maternal aRMOR
QBL Measurement	\checkmark	\checkmark	Х	Х	√
Personalized Compensation Alert	Х	Х	Х	Х	✓
Early detection	25% EBV lost	Х	✓ (1 hr pre-birth)	Prediction	Prediction (<5% EBV lost)
Internal bleeding	Х	Х	\checkmark	\checkmark	✓
Real-time, continuous	Х	Real-time EMR integration only	✓ (intrapartum only)	✓ (intrapartum only)	√
Robust performance across skin types	Х	N/A	(unknown)	X (PPG)	✓ 10x better than Pulse Oximetry

We believe Georgia can lead the nation.

Email

kelsey.mayo@armormedical.us

Website

armormedical.us

References

- Committee on Practice Bulletins-Obstetrics. Practice Bulletin No. 183: Postpartum Hemorrhage. Obstet Gynecol 130, e168–e186 (2017). 1.
- Marshall, A. L. et al. The impact of postpartum hemorrhage on hospital length of stay and inpatient mortality: a National Inpatient Sample-based analysis. American journal of obstetrics and 2. gynecology 217, 344-e1 (2017).
- Severe Maternal Morbidity in the United States | Pregnancy | Reproductive Health |CDC. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/severematernalmorbidity.html (2021). 3.
- Gyamfi-Bannerman, C. et al. Postpartum hemorrhage outcomes and race. American Journal of Obstetrics and Gynecology 219, 185.e1-185.e10 (2018). 4.
- 5. Berg, C. J. et al. Preventability of pregnancy-related deaths: results of a state-wide review. Obstetrics & Gynecology 106, 1228–1234 (2005).
- Reale, S. C., Easter, S. R., Xu, X., Bateman, B. T. & Farber, M. K. Trends in Postpartum Hemorrhage in the United States From 2010 to 2014. Anesth Analg 130, e119–e122 (2020). 6.
- Deneux-Tharaux, C., Bonnet, M. & Tort, J. Epidemiology of post-partum haemorrhage. Journal de Gynecologie, Obstetrique et Biologie de la Reproduction 43, 936–950 (2014). 7.
- Wang, Y. Vascular biology of the placenta colloquium series on integrated systems physiology: from molecule to function. Lousiana State University, Technology Partner-Atypton Systems. Inc 98, 8. (2010).
- Cohen, W. R. Hemorrhagic shock in obstetrics. (2006). 9.
- 10. Nathan, H. et al. Shock index: an effective predictor of outcome in postpartum haemorrhage? BJOG: An International Journal of Obstetrics & Gynaecology 122, 268–275 (2015).
- 11. Lee, S. et al. Use of the shock index to predict maternal outcomes in women referred for postpartum hemorrhage. International Journal of Gynecology & Obstetrics 144, 221–224 (2019).
- 12. Obstetric Hemorrhage | AIM. https://saferbirth.org/psbs/obstetric-hemorrhage/.
- 13. Home | Vasowatch. https://www.vasowatch.com/.
- 14. VIBRANT: Early Prediction of Life-Threatening Uterine Atony Using Maternal Heart Rate" submitted to the IEEE/ACM CHASE 2025 Conference.
- 15. Triton. https://www.safeor.com/triton.1.
- 16. Clinical & Product Information. BaymatobTM https://baymatob.com/index.php/clinical-product-information
- 17. Bonetta-Misteli, F. et al. Development and evaluation of a wearable peripheral vascular compensation sensor in a swine model of hemorrhage. Biomed. Opt. Express, BOE 14, 5338–5357 (2023).